AUTOMATED REASONING, 2012/2013 1B:
EXAM (OPEN BOOK), JAN 22, 2013

DOINA BUCUR, RUG

[(P1) Write LTL from informal specifications]| Given atomic propositions {a, b, ¢, d}, write
an LTL formula for each of the properties below, and characterize each into safety or liveness:
(a} a should never occur at the same time as b,

(b} any occurrence of ¢ should eventually be followed by d,

{¢} a should oceur exactly once.

[15%]

[(P2) LTL checking on states] Consider the following Kripke structure over the set of atomic

propositions {e, b}:
oL

{a}
{a} (& Qz/ 53 ) {a,b}

For each of the following LTL formulae f, state whether the formula holds on all computational
paths, A f, and—if the formula is violated—give a minimal counterexample:

{a) f:= G{bUa)

(b) f:==G=b
{¢) f:=GF-a
(d) f=FGa
(e) f=XXb

[15%]

[(P3) Equivalences of LTL formulas] Which of the following LTL equivalences are correct?
Either prove each equivalence or provide a counterexample. If you need to use other known LTL
equivalences in a proof, prove those also; otherwise, simply use the LTL induction rules.

(1) G(fvg) = GfVvGy
(2) XFf & FXf
@) FfYV(XGSf) & XGf
(4) F(frg) o FfAFg
[20%)




2 DOINA BUCUR, RUG

[(P4) Automata-based checking] Consider the following system model M and negated prop-
erty in automaton form &, both over the set of atomic propositions {a, &, ¢}:

—q =bA=¢

Does the property hold on this system? If not, give a counterexample.

(Note: the notation for state labels in M is such that only the positive form of atomic propo-
sitions is explicitly written; thus, a state label {a} implicitly means {a, =b, ~c}.)

(15%)

[(P5) Minimal counterexample] Sketch an algorithm (in pseudocode) for checking invariants
over Kripke structures, such that in case the invariant is violated, the counterexample returned
by the algorithm is of minimal length.

[15%]

[(P6) Extend LTL with past-time operators] You know the LTL temporal operators X,
G, F, U; these are called “future-time” temporal operators, and they describe the future of an
execution starting from the initial state. Extend LTL with “past-time” temporal operators, which
describe the past of an execution from any state of that execution:

“Previously”: X~!f. In the previous state on the path, f held.

“Always in the past”: G~1f. Always in the past, f held.

“Eventually in the past”: F~!f. Sometime in the past, f held.

“Since”: FfU™lg. Sometime in the past, g held, and ever since that point, f held.

(1) Write an induction rule for checking formulas written with each new temporal operator on an
execution path 7. You may use the usual notation 7° (with k& > 0) to describe the fragment of =
which starts in the k-th state; if you need new notation, define it.

(2) You know a method for runtime verification of future-time LTL which uses a monitor in
automaton form, and which has constant computational complexity: it needs only a constant
amount of time to verify the specification at each step in the system execution.

Sketch a new method to do runtime verification of a system execution against past-time LTL,
with the same complexity, yet using only induction rules upon past-time LTL formulas. Your
method should:

(i} take any given past-time LTL specification;
(ii) also take a linear system execution, which starts in an initial state and increases in length;

{ili) have an algorithm which outputs at each state in the system execution a (current} con-

clusion about the truth value of the specification.

(1) [12%)]
(2) (8%]




