AUTOMATED REASONING, 2012/2013 1B: EXAM (OPEN BOOK), JAN 22, 2013

DOINA BUCUR, RUG

- [(P1) Write LTL from informal specifications] Given atomic propositions $\{a, b, c, d\}$, write an LTL formula for each of the properties below, and characterize each into safety or liveness:
- (a) a should never occur at the same time as b,
- (b) any occurrence of c should eventually be followed by d,
- (c) a should occur exactly once.

[15%]

[(P2) LTL checking on states] Consider the following Kripke structure over the set of atomic propositions $\{a, b\}$:

For each of the following LTL formulae f, state whether the formula holds on all computational paths, Af, and—if the formula is violated—give a **minimal counterexample**:

- (a) $f := \mathbf{G}(b\mathbf{U}a)$
- (b) $f := \mathbf{G} \neg b$
- (c) $f := \mathbf{G}\mathbf{F} \neg a$
- (d) $f := \mathbf{FG}a$
- (e) f := XXb

[15%]

- [(P3) Equivalences of LTL formulas] Which of the following LTL equivalences are correct? Either prove each equivalence or provide a counterexample. If you need to use other known LTL equivalences in a proof, prove those also; otherwise, simply use the LTL induction rules.
 - (1) $\mathbf{G}(f \vee g) \Leftrightarrow \mathbf{G}f \vee \mathbf{G}g$
 - (2) $XFf \Leftrightarrow FXf$
 - (3) $(\mathbf{F}f) \lor (\mathbf{XG}f) \Leftrightarrow \mathbf{XG}f$
 - (4) $\mathbf{F}(f \wedge g) \Leftrightarrow \mathbf{F}f \wedge \mathbf{F}g$

[20%]

[(P4) Automata-based checking] Consider the following system model M and negated property in automaton form \overline{S} , both over the set of atomic propositions $\{a, b, c\}$:

Does the property hold on this system? If not, give a counterexample.

(Note: the notation for state labels in M is such that only the positive form of atomic propositions is explicitly written; thus, a state label $\{a\}$ implicitly means $\{a, \neg b, \neg c\}$.)

[15%]

[(P5) Minimal counterexample] Sketch an algorithm (in pseudocode) for checking invariants over Kripke structures, such that in case the invariant is violated, the counterexample returned by the algorithm is of minimal length.

15%

[(P6) Extend LTL with past-time operators] You know the LTL temporal operators X, G, F, U; these are called "future-time" temporal operators, and they describe the future of an execution starting from the initial state. Extend LTL with "past-time" temporal operators, which describe the past of an execution from any state of that execution:

"Previously": $X^{-1}f$. In the previous state on the path, f held.

"Always in the past": $G^{-1}f$. Always in the past, f held. "Eventually in the past": $F^{-1}f$. Sometime in the past, f held.

"Since": $f\mathbf{U}^{-1}g$. Sometime in the past, g held, and ever since that point, f held.

- (1) Write an induction rule for checking formulas written with each new temporal operator on an execution path π . You may use the usual notation π^k (with $k \ge 0$) to describe the fragment of π which starts in the k-th state; if you need new notation, define it.
- (2) You know a method for runtime verification of future-time LTL which uses a monitor in automaton form, and which has constant computational complexity: it needs only a constant amount of time to verify the specification at each step in the system execution.

Sketch a new method to do runtime verification of a system execution against past-time LTL, with the same complexity, yet using only induction rules upon past-time LTL formulas. Your method should:

- (i) take any given past-time LTL specification;
- (ii) also take a linear system execution, which starts in an initial state and increases in length;
- (iii) have an algorithm which outputs at each state in the system execution a (current) conclusion about the truth value of the specification.

(1) [12%](2) [8%]